
Synergy of review techniques
from PSP1 to Formal inspections

Daniel M. Roy

(STPP, Inc. - Software Technology, Process and People, Inc.)

(Visiting scientist, SEI)

Abstract: Observations, data, and an experimental
framework based on the principles of the experience
factory are proposed to show the synergy of the PSP
personal review techniques, the TSP approach and
Fagan’s formal inspections. The model can be used to
predict defect removal patterns at the personal, team, and
organization levels.

1. Introduction
Since their introduction in 1976, formal inspections have had a highly positive impact on
the maturity of the software process and on the quality of the software products of
numerous companies world-wide [Gilb-93]. A large body of evidence has established the
fact that formal inspections are one of the most cost effective and easiest measures that
can be put in place to make an immediate positive impact on any organization involved in
software development.

The Capability Maturity Model (CMM)2 has had a profound impact on the organizational
practices within the software industry [Herbsleb-94]. It is fitting that Peer Reviews feature
preeminently in CMM V1.1 (been a level 3 Key Process Area). Incidentally, it is also totally
incomprehensible that PR has been dropped as a KPA from CMMI-SE/SW, released for
public use by SEI last August.

Others, even more general SPI paradigms such as the experience factory have been
demonstrating the value of experiment (an model) based software improvement for over
20 years now [Basili-89].

Building on the success of the CMM, the personal software process was developed by
Watts Humphrey [Humphrey-95] by downscaling CMM major practices to the level of the
individual engineer. Using fairly simple and well proven engineering principles, the PSP
trained engineer plans his/her work, enacts a well defined process, building the product
while gathering data, and performs a post mortem analysis that seeds the next
improvement cycle. In so doing, the PSP is much more than a downscaling of CMM V1.1.
It can be seen, and it is taught by the author, as the downscaling of Basili’s Experience
Factory (fig. 1), the spirit of level 5.

1 Personal Software Process, PSP, Team Software Process and TSP are registered trademarks of CMU
2 CMM and Capability Maturity Model are registered in the U.S. patent office

Copyright © 1999 STPP (Software Technology, Process & People)

30PSP: An experience workshop?

PSP exercise PSP experience

Set goals
Study process

Plan

Execute plan
Collect data

PSP elements,
data & reports

Improvement

Post Mortem

Exercise
characteristics

Process, model
tools, components

Data, lessons learned

Immediate corrective
action

Figure 1: Downscaling the factory

It is fitting that personal design and code reviews (downscaled from Fagan’s inspections)
feature preeminently in PSP. However, the current PSP training from SEI puts more
emphasis on the product improvement aspects of these techniques rather than the
personal process improvement that the analysis of their data should motivate.3

The Team Software Process is now under development at SEI to apply PSP principles to
small teams and bridge the gap between PSP and CMM practices. Formal inspections
feature preeminently in TSP activities. The “Quality Manager” and “Process Manager”
(two of the major role of TSP) cooperate to lead the team in improving the process based
on the analysis of the results of these inspections.

This paper presents original data gathered from nearly 100 engineers in diverse
industries to assess the effectiveness of PSP reviews. It discusses the limitations of
these techniques and contrasts the data with published results from formal inspections.
Some limited data from early TSP experiments in India are also presented.

Finally, a multi-stage review model is presented to characterize the synergy between
PSP reviews, team reviews, and formal inspections. Observations, lessons learned and
quantitative tidbits of information will be offered during the talk in the spirit of the
experience factory.

3 PSP students do analyze their data in mid term report R4 and final report R5 and produce Process
Improvement Proposals along the way for nine of the ten programs they write during the class.

2. PSP reviews
Figure 2 shows the evolution of the “process yield” during a PSP class recently given at a
major software company in New Jersey. The PSP “Process Yield” is defined as the number of
defects removed before first compile divided by the number of defects injected before compile
and expressed in percent. The numbers on the X axis represent the programs that PSP students
have to produce during the 10 days training class to practice increasingly sophisticated level of
their personal process.

Copyright © 1999 STPP (Software Technology, Process & People)

15
yieldY i e l d - A l l S t u d e n t s , A l l

P r o g r a m s

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 2 3 4 5 6 7 8 9 1 0 1 1

P r o g r a m N u m b e r

Y
ie

ld

M a x

A v g

M in

72%

90%

Cross-
reviews

Figure 2: Improving personal review effectiveness

Before the introduction of formal personal design and code review techniques with program 7,
engineers remove only a small fraction of their defects before compile. After defining their own
checklists, based on the analysis of their own defects, the average yield rises to reach 90% by
the end of the class. This result will not surprise anyone familiar with Cleanroom techniques.

As a way to share lessons learned and exploit cognitive dissonance [Weinberg-71], the author
also demands that cross reviews be held after a personal baseline has been established with
program 7. This extra step explains the superior (compared to the SEI data base [Hayes-97])
results observed. Results and their statistical validity are discussed in detail during the talk.

TSP reviews
One of the metrics known to have an impact on yield is the number of lines of code reviewed
per hour. Gilb advises to not exceed 200 executable LOC reviewed per hour to maximize the
chance of finding defects during inspections [Gilb-93]. The PSP class uses the same number.

Figure 3 shows an attempt at finding an explicit negative linear regression relationship between
yield and speed with PSP class data. Tremendous variation in individual performance results in a
very poor correlation (R**2<0.2). It must be noted that this data was gathered in a small group
(10 students) featuring a wide variation in individual experience and programming languages.

Defects removed by CR

R2 = 0.2022

-20

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

Review speed LOC/h

C
R

 d
ef

ec
ts

/K
LO

C

Figure 3: Poor correlation between code review speed and yield

With Team software process (Fagan style) inspections, correlation is not that much better but
limited author’s team data obtained through TSP0.3 experiments in India shows a clearer
difference in yield between “fast reviews” (faster than 250 LOC/h) and the rest (Figure 4).

This time the group is much more homogeneous, the individuals having very comparable
experience, using the same programming language and environment in a production setting and,
above all, having completed PSP training and TSP launch as a team.

Copyright © 1999 STPP (Software Technology, Process & People)

24
TSP Yield

0

20

40

60

80

100

0 200 400 600 800

Review rate (LOC/Hr)

Yi
el

d
%

>250 LOC/Hr: avg=31.7%
<250 LOC/Hr:
avg=78.6%

Figure 4: Respecting the TSP speed limit

3. Fagan’s inspections
Barry Boehm in his landmark work of over 20 years ago provided highly practical information
on the cost of defects found at various stages of the process [Boehm-82]. In a recent study of
DoD contractors, Don O’Neill provided similar data accompanied with insightful comments
showing the benefit of Fagan class inspections [O’Neill-98]. Their data is summarized in Table
1 below.

Phase removed Time to fix defect
Code inspection 30 minutes
Integration testing 2-10 hours
System testing 10-40 hours

Table 1: Cost of defects

If a model could be built to characterize defect removal effectiveness and costs across the
process, the impact of review techniques at each phase of the life cycle could be quantitatively
studied and their return on investment precisely determined. The following paragraphs describe
one step toward such a model.

4. A data driven model
Figure 5 represents any phase of a software process as a filter, actually an active filter in
the sense of electronics. Noise (defect) is inherited from previous stages, some is
created in the current stage, some is removed and some escape to the next stage.

Copyright © 1999 STPP (Software Technology, Process & People)

7
A phase in the life of a defect

From

previous
phases

Injected
in phase

Removed
in phase

Escaped

from phase
PSP

phase

Any phase in
the software
development
process

Figure 5 : Filtering defects

The goal of any software process is to maximize the signal/noise ratio by reducing the
injection of defects while boosting the effectiveness of their removal (filtering). The model
shows that this is best achieved at the individual level (where the defects are created)
through personal review and by the application of a synergy of review techniques (cross
review and inspections) to catch what was missed because of individual bias.

Figure 6 shows how several stages of filtering can help improve the quality of the
software product. Here, yield is defined for each stage as the percentage of the defects
removed in the stage that were present at stage entry. For instance, the first stage of
yield Y1 removes a portion of the I1 defects present at its entry but allows I1(1-Y1)
defects to escape to later phases.

Copyright © 1999 STPP (Software Technology, Process & People)

10
Chain yield

Y1 Y2 Y3 Y4

I1*Y1 I1(1-Y1)*Y2 I1(1-Y1)(1-Y2)*Y3

I1

I1(1-Y1)

Chain yield=Y1+Y2(1-Y1)+Y3(1-Y1)(1-Y2)
X = I1 (1-Chain yield)

X

I1(1-Y1)(1-Y2)

Figure 6: Cascading the filters

When several stages of filtering are combined, the contribution of each stage can be
easily studied and a composite (akin to a transfer function in electronics), or chain yield
can easily be computed and, therefore the number X of defects left in the product after all
the reviews can be predicted.

The chain yield is clearly more dependent on the yield of the early stages since the
multiplication factors (1-Y) are all lower than one. Figure 7 shows the impact of boosting
the first yield from 50% to 80% on the defect escaping a chain of reviews everything else
(such as other stage yields) been equal.

Copyright © 1999 STPP (Software Technology, Process & People)

11
Chain yield example-1

Chain yield = 0.5 + 0.4*0.5 + 0.75*0.5*0.6 = 93%

Design
(20%)

Pers.
DLDR
(50%)

Cross
DLDR
(40%)

Design
inspection

(75%)

7100

50

50

20

30

23

Copyright © 1999 STPP (Software Technology, Process & People)

12
Chain yield example-2

Pers.
DLDR
(80%)

Cross
DLDR
(40%)

Design
inspection

(75%)

3100

80

20

8

12

9

If up front yield goes from 50 to 80%, chain yield goes to
97% and escaped defects are cut in half!

Figure 7: Impact of the earliest yield

This model can be used to study the impact of review techniques on the process overall
defect removal effectiveness. It seems to show however, that boosting the yield of the
individual review has the most dramatic impact on the quality of the product.

Several factors impacting individual yield, cross review yield and formal inspection
effectiveness, including psychological factors, will be discussed in the talk.

5. Conclusion
The quality of the software product depends on the effectiveness of all defect detection
and removal techniques used at each stage of the software process. This paper shows
the importance of personal review techniques. However, the discussion will show that
PSP style reviews are insufficient in a production (team-based) environment.

A simple model allows the quantitative study of the synergy between personal reviews,
cross reviews and formal inspection using data gathered from the field. The next step will
be to add defect detection and removal costs at each phase of the life cycle to obtain a
better picture of the costs and benefits achieved by each technique and better optimize
the software development process.

6. Bibliography

[Basili-89] Victor Basili, `Software Development: A Paradigm for the Future’, Proceedings of
the thirteenth Annual International Computer Software & Applications Conference, Orlando,
FL, September 20-22, 1989.

[Boehm-82] Barry Boehm, “Software Engineering Economics”, 1982

[Gilb-93] Tom Gilb and Dorothy Graham, “Software Inspection”, Addison Wesley, 1993

[Hayes-97] Will Hayes and James W. Over, “The Personal Software Process (PSP): An
Empirical Study of the Impact of PSP on Individual Enginers”, CMU/SEI-97-TR-001, CMU,
1997.

[Herbsleb-94] Jim Herbsleb et al, “Benefits of CMM Based Software Process Improvement”,
CMU/SEI-94-TR-013, August 1994.

[Humphrey-95] Watts S. Humphrey, `A Discipline for Software Engineering', Addison
Wesley, 1995.

[O’Neill-98] Don O’Neill, “National Software Quality Experiment”, SEL workshop, 1998

[Weinberg -71] Gerald M. Weinberg, ‘The Psychology of Computer Programming’, Van
Nostrand Reinhold, 1971

